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ABSTRACT

      The physical properties of thin liquid layers are studied.  The notion of spatial

limitation of a system undergoing critical phenomena and phase transitions is proposed.

The scaling formulae for the singular part of the fluctuation free energy and correlation

length for liquid systems are obtained and analyzed. The method to study the pair

correlation function and correlation length of order parameter fluctuations for thin liquid

layers is proposed. The connection  of results obtained for thin liquid layers with the

Fisher scaling hypothesis for finite-size systems is discussed.

KEY WORDS: correlation length, critical state, finite-size system, scaling hypothesis,

statistical mechanics, thin liquid layers.
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1. INTRODUCTION

       The physical properties of systems undergoing critical phenomena and phase

transitions are essentially influences by such a practical factor as the spatial limitation.

Many systems of experimental and theoretical interest are spatially finite-sized, such as

thin liquid layers, interfaces, porous media, biomembranes, synaptic clefts, etc.

      Here we proposed an approach to studying critical phenomena in thin liquid layers

based on the methods of statistical physics, namely the integral and corresponding

differential equations for the pair correlation function of order parameter fluctuations

(see e.g. [1-5]} and on the scaling hypothesis for finite-size systems proposed by

M.Fisher [6]. The main idea of our approach is connected with the fact that the pair

correlation function can be found as the Green function for the Helmholtz operator with

the certain boundary conditions at the surfaces of a thin plane-parallel layer. It allows

then to study the critical behavior of thin liquid layers and discuss the physical

properties of experimental interest.

2. THE NOTION OF SPATIAL LIMITATION AND GENERAL PROPERTIES

OF FINITE-SIZE LIQUID SYSTEMS

2.1. The notion of spatial limitation

        A system can be considered as finite-sized near the critical point the phase

transition point if its characteristic linear size L becomes comparable with the

correlation length Rc of the order parameter fluctuation , i.e. Li ≈ Rc  . As  is well known

from the fluctuation (scaling) theory of phase transitions (see e.g. [7] ) , the correlation

length  Rc = Rcoτ-ν , where the amplitude of the correlation length in liquids can reach

the value  Rco ≈ 1-10 nm. Nowadays, it became possible to reach the critical point with
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respect to the temperature variable at “distances” like | T-Tc |min≈10-2-10-3 K   for  �� ≈

102 � , or using dimensionless values τmin = |T - Tc|/ Tc ≈ 10-5  [7-10]. As the critical

exponent of the correlation length is equal ν ≈ 0,63 for the space dimensionality d = 3,

then the maximum values of the correlation length in classical liquids can approach

such values as    Rc ≈ 1 - 10 nm ⋅ (10-5)-0,6 ≈ 103 – 104 nm. (Spatial situation can be

realized for quantum liquids where, because of very small values of the critical

temperature, the correlation length becomes two orders more; for instance, in liquid

helium τ ≈ 10-8  �  Rc /Rco ≈ 105 ). So, liquid systems which have the linear size L about

1 - 10 mkm could be considered as finite-sized near the critical point.   

2.2. General properties of finite-size liquid systems

      M.Fisher [6] and other investigators (see e.g. [11,12]) have proposed a modified

scaling hypothesis for such finite-size systems. According to this hypothesis (here we

shall formulate it for classical liquids), the fluctuation part of the thermodynamic

potential and the correlation length depend not only on the thermodynamic variables

(the reduced temperature τ, etc.) and external fields h but on the linear size L of a

system:

       ∆�����. = L-d f� (aτL1/ν,  bhLβδ/ ν),

                                  Rc = L fR (aτL1/ν, bhLβδ/ ν).                                    (1)

The first scaling argument in Eq. (1)  � = aτL1/ν  in both scaling functions f� and fR  can

be obtained from the following formulae:

                Rc ∼  τ--ν,  τ ∼  Rc
-1/ν ,  x ∼ ν

ν ττ /1
/1

~ L
R c

−    (Rc→L)      (2)
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In analogous way it is easily to obtain the expression for the second scaling argument

� = bhLβδ/ν  with taking such formulae into account:

                                 Rc ∼  τ--ν ∼  ϕ -ν/β ∼  h-ν/βδ  ,   ϕ ∼  τβ ,   ϕ ∼  h1/δ ,  τ ∼  ϕ1/β  ,

                       h ∼  Rc
-βδ/ν ,    y ∼  νβδ /−

cR

h
 ~  hL βδ/ν     (Rc→L)              (3)

Here ϕ = ( ρ - ρ c) / ρ c is the order parameter for classical liquids, i.e. the reduced density.

         Let us consider some consequences of the scaling hypothesis (1) for the physical

properties of finite-size liquids.

�) equilibrium value of the order parameter (the reduced density or

concentration)

           ϕ0 = { ρ0 - ρc, …} = (∂∆ �����./ ∂h ) τ = L-d+βδ/ν fϕ (x,y),        

(4)

           fϕ = b(fϕ
 )'h ,  - d + βδ/ν = -β/ν   (3ν = 2-α, α +2β + γ = 2, βδ = β + γ).

         Thus, it is possible to propose such an algorithm to derive the dependence of any

physical property on the linear size L in a finite-size system:

                                     �  ∼   τ-n ∼   Rc
n/ν   ∼   Ln/ν  .                                      (5)

In other words, if any quantity has its singular behavior �  ∼   τ -n  in the spatially infinite

system, then with taking such formulae into account

                                      Rc∼τ -ν ,    τ ∼  Rc
-1/ν ,    Rc → L

the dependence of this quantity on the linear size L  in a finite-size system near its

critical point or phase transition point must be as follows:

                                                    �  ∼    Ln/ν  .                                             (6)

For instance, for the order parameter in the spatially infinite system one has  ϕ0 ∼  τβ.

Then in a finite-size system the dependence of the order parameter on the linear size L is
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ϕ0 ∼  τβ ∼  Rc
-β/ν ∼  L-β/ν.  It gives directly such a result for a spatially infinite system

where the linear size and correlation length are going to infinity ( L, Rc → ∞ ): the value

of the order parameter is vanishing (ϕ0 → 0) while approaching the critical state, as it is

expected for this system.

          b) the isothermal compressibility of finite-size liquids

                      β T = (∂2∆����� / ∂h2)τ = L-d + 2βδ/ν f β (x,y)          ,

                       f β = b(fϕ
 )"h ,     - d + 2βδ /ν = γ/ν.                           (7)

          c) the heat capacity of finite-size liquids

                        � = (∂ 2∆����� / ∂τ 2)h = L-d + 2/ν fc (x,y),                      (8)

                        fc = a(fϕ
 )"τ ,     - d + 2/ν = α/ν.

          d) shifts of the critical parameters in finite-size liquids (the critical temperature,

density, concentration, critical external fields). It is possible to show that the critical

parameters for any finite-size liquid  are not unique. Say, the critical temperature of a

certain spatially limited liquid varies for various physical properties.

           Let us find a new value of the critical temperature Tc(L) in compare with its bulk

value Tc(∞) for a spatially infinite liquid.  First, we shall find the shift of the critical

temperature τ* = [Tc(L) - Tc(∞)] / Tc(∞) for the isothermal compressibility or for the

susceptibility in a general case. One has the following expression for this quantity:

                                  ),(),(
/1

/ yxf
a

x
yxfL

Lax
χ

γ

τχ
νγ

τ
χ

ν 

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
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It is easy to obtain from Eq. (9) such a formula for the shift of the critical temperature

                         ν
χ

ν

χ

χγ
τ /1/1

'

*

)(

)()( −− ==
∞

∞−
= LAL

af

f

T

TLT

c

cc .               (10)

       Now let us find the shift of the critical temperature for the heat capacity.  It gives

such results

                                          � = Lα/νfc(x,y) = (x/aτ)α fc(aτL1/ν, y)

                                   ,0
1 /1'

***
=





+





− ν

αα

τττ
α aLf

a

x
f

a

x
cc

                                           νν
α

τ /1/1

'

* −− == LAL
af

f

c

c

c

.                         (11)

      Finally one has such a formula for the shift of  the critical temperature from the

condition of maximum for the correlation length Rc :

                                          νν
ν

τ /1/1

'

* −− == LAL
af

f

R
R

R

.                      (12)

        Thus, it is possible to make the important conclusions as follows:

1. Eqs. (10)-(12) give the universal behavior of the size dependence τ* ∼  L-1/ν

      for shifts of the critical temperature in finite-size systems.

2. Numerical values of τ*  which give maximums for various physical properties in

finite-size systems (χ, �, Rc, …) are not universal because of the different

amplitudes  �χ ≠ �� ≠ �R   in Eqs. (10)-(12).

           Experimental studies by H.Lutz  et al. [13] and others (see e.g. [14] ) confirm the

size dependence τ* ∼  Tc(L) - Tc(∞)] ~ L-1/ν    for shifts of the critical temperature in

finite-size systems.
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Summarizing the critical behavior of finite-size systems in compare with infinite

ones, it is worthy to stress the most principal results, namely:

− existence of  the above-mentioned shifts of  the critical temperature and other

critical parameters,

− existence of  the new values of the critical exponents,

− existence of  the certain vicinity of phase transition which becomes narrow while the

linear size of a system is increasing,

− existence of  the shifts of maximums for  physical properties at the new critical

temperature (other critical parameters) towards large temperatures (densities, etc.)

and an anomalous growth of these maximums (without taking the effects of spatial

dispersion into account) with transition to spatially infinite systems.

3. PAIR CORRELATION FUNCTION AND CORRELATION LENGTH OF

THIN LIQUID LAYERS

3.1. Pair correlation function

      An anomalous growth of the correlation length Rc predicted by the scaling-law

theory [7] can realize only for spatially infinite systems. Only for such systems the

following expression for the pair correlation function from the Ornstein-Zernicke (OZ)

approximation is valid:

                         G2(r) = A exp (-r/Rc)/r ,                          (13)

The pair correlation function of order parameter fluctuations in Eq. (13) is the Green

L̂ = ∇  2 - Rc
-2 for a spatially infinite system with zeroth boundary conditions when the

distance r between two fluctuation is going to infinity. To use Eq. (13) for systems of
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experimental interest, it is necessary for linear size of a system L to be much more than

the correlation length Rc.

        Let us assume the geometry of our thin liquid system in the form of a plane-

parallel layer  -∞< �,� < ∞, -L0 ≤  z ≤ L0 .  One can find the pair correlation function

Green function G2(R) as the Green function of the differential Helmholtz operator for

such a thin liquid layer with zeroth boundary conditions at the surfaces z=L0 and z=-L0.

      There is another method [4,5] of  finding the pair correlation function as the result

of acting of the inverse Helmholtz operator L̂ = ∇  2 - �2  (here � = Rc
-1)  on the delta-

function δ(r).  To solve this complicated problem, it first requires the formula for the

delta-function δ(r) constructed of orthonormal eigenfunctions for the Helmholtz

operator L̂ with zeroth boundary conditions for this function together with its first

derivative and with eigenvalues satisfying the relation λn
 = kx

2 + ky
2 + kz

2 + �2 . Here

components of wave vector kx, ky  change continuously from -∞  to +∞, while kz is

discrete (kz = n2π2 / 4L0
2, n = 0,1, …). The following formula for the delta-function

satisfied all these conditions:

         δ(r)=(1/8πL0)∑
≥0n

∫∫[1-(-1)n]cos(πnz/2L0)
)( ykxki yxe

+
dkxdky         (14)

With allowance for Eq. (14), one can obtain an expression for the pair correlation

function of order parameter fluctuations in the form

   G2(r)  = L̂-1δ(r) =(1/8π2L0
2)∑

≥0n

∫∫ [1-(-1)n] cos(πnz/2L0) 
)( ykxki yxe

+

                 (kx
2 +ky

2 + (nπ/2L0)
2 + �2)-1 dkxdky                                             (15)

Then it is convenient to use polar coordinates

                      kx = kxycosϕ ,  ky = kxysinϕ , ρ = (x2 + y2) ½
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and to fulfil the integration in (15) with taking such formulae for cylindrical functions

into account

       ��� (ikρcosϕ) = J0 (kρ) + 2icosϕ J1 (kρ+ 2i2 cos 2ϕ J2 (kρ) + … ,

                                     ∫
∞

=
+0

022
0 )(

)(
aK

ak

dkkkJ ρ
ρ

.

It gives the following expression for the pair correlation function G2(r,z) of a thin liquid

layer:

  G2(p,z) = (1/4πL0) ∑
≥0n

[1 - (-1)n] K0 

















+

2/1

2
0

22
2

4L

n
ê

πρ cos(nπz/2L0).     (16)

Here K0(u) is the cylindrical Macdonald function.

       In the case of a plane-parallel layer of thickness d=2L0 >> Rc the limiting

transition to the OZ approximation can be easily obtained:

G2(p,z) = (1/4πL0)(2L0 /π)2 ∫
∞

0

 K0 

















+

2/1

2
0

22
2

4L

n
ê

πρ cos(kzz) dkz =

 = (1/4π) exp [-� (ρ2 + z2 )1/2] / (ρ2 + z2)1/2   .                                 (17)

The main contribution in Eq. (17) for G2(p,z) is given by the first term.

Therefore, it is possible to use an approximate expression for the pair correlation

function of density fluctuations in thin liquid layer

 G2 (p,z) = (1/2πL0 ) K0 [ρ ( �2 + π2/ 4L0
2)1/2 cos(πz / 2L0) .         (18)

In accordance with Eqs. (16) and (18), the correlation function G2 (r) demonstrates an

oscillatory behavior in the ρ direction  confirming computer-simulation studies for the

radial distribution function in finite-size liquids.
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3.2. Correlation length of density fluctuations

Because of a non-exponential shape of G2,  it is natural to find the correlation length

of density fluctuation as the second normalized spatial moment of the pair correlation

function

           Rc
* = (�2)

1/2 , �2 = ∫r2G2(r)dr / ∫G2(r)dr  .              (19)

Using polar coordinates in Eq. (19) and formula for the main contribution for the pair

correlation function given by Eq. (18), one has

            �2 = 

∫

∫
∞

∞

+

+

0

2
0

22
0

3

0

2
0

22
0

3

)4/(

)4/(

ρπρρ

ρπρρ

dLêK

dLêK

                       (20)

With taking  the following expression for the cylindrical functions  into account


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∫ 2
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0

νµνµµµ
ν

µ õÃÃadxaxKx ,

it is possible to derive the formula for the correlation length of density fluctuations:

                           Rc =  [ 2
0

22 4/

4

Lê π+
+(1 – 8/ 2π )4L0

2]1/2.                    (21)

       The consequences can be deduces from Eq. (21) as follows:

1. The correlation length Rc of thin liquid layer depends not only upon thermodynamic

variables (because of  relationships between κ and temperature, density, etc.) but also

on the thickness of a layer d=2L0 or on the geometric factor K=d/Rc0  which shows the

number of molecular monolayers along the direction of spatial limitation.

2. The correlation length expressed by Eq. (21) is determined by two contributions

                                     Rc =  [(Rc)xy
 2 +(Rc)z

2]1/2

where
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                                    (Rc)xy = 2/12
0

22 )4/(

2

Lê π+

is the correlation length in the xy plane, and

                               (Rc)z
  = 2L0 (1 – 8/ 2π )1/2

is the correlation length in the z direction.

3. At the critical bulk point  the value �2  (the inverse isothermal compressibility) is

going to zero and one has for the correlation length in the xy plane such an expression

                                                  (Rc)xy = 4L0 / π    .                             

If the thickness of a plane-parallel liquid layer is equal d=2L0 ≈ 100 nm, then

(Rc)xy = 63,7 nm  at  T=Tc(∞).

4. For the case of the critical density and � ≠ ��  the value �2  ∼  (∂ µ / ∂ ρ )�  ∼  τγ,

or  �2 = �0
2τ 5/4,  where �0  is the inverse amplitude of the correlation length (�0 = Rco

-

1). The amplitude of the correlation length Rco has usually the same order of magnitude

as the radius a0 of direct intermolecular interactions, i.e. �0 ≈ a0
-1

 ≈ (0,1 nm)-1 ≈ 1010 m -

1. Then if L0 = �1�0 (coefficient �1 = L0 / a0 = 500  for thickness 2L0 = 102 nm) one

has for the correlation length in the xy plane

                                      RC(τ)xy = 
2
1

24/5

10

4/

102

ê

ì

πτ +
⋅ −

.                           (22)

Numerical values of  RC(τ)xy with respect to the reduced temperature τ are illustrated  by

Fig.1.

5. For the case of  T = Tc and ρ ≠ ρ c the value �2  ∼  (∂ µ / ∂ ρ )�  ∼  ∆ ρ δ -1, where

∆ ρ  = ( ρ  - ρ �) / ρ � ,  or  �2 = �0
2∆ ρ 3,5.  For the same parameters  �0 ,  Rco , L0
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and �1  as in the case of the critical density one has the following expression for the

correlation length in the xy plane:

                               RC(∆ ρ )xy = 2
1

25,3

8

4/||

102

ê

ì

πρ +∆

⋅ −

                  (23)

Fig. 2 illustrates the density dependence of  the correlation length of a plane-parallel

layer given by Eq. (23).

4. CONNECTION WITH THE SCALING HYPOTHESIS FOR FINITE-SIZE

SYSTEMS

       The initial scaling hypothesis for finite-size systems has been formulated by

M.Fisher in [6]. Let us discuss results obtained above for thin liquid layers with this

hypothesis formulated for the susceptibility

                                                 χ  =  Kω  F (Kθ τ )                                   (24)

Here K  is the above-mentioned geometric factor and  F(x) is the corresponding scaling

function of  the susceptibility (the isothermal compressibility in liquids). It is worthy to

mention that Eq. (24) and the scaling hypothesis for finite-size systems formulated in

Eqs. (1) and (7) give the same results for the susceptibility and other physical properties

in zeroth external field, i.e. for the second scaling argument  y = 0  in scaling functions

of  Eqs. (1) and (7).

       The most important consequences of Eq. (24) are as follows:

- the critical exponent ηω −= 2 ;

- the critical exponent νθ /1= ;



14

- the scaling function F(x) has such an asymptotic formula for large arguments x =

Kθ τ >> 1 : F(x) ~ x-γ
, where  νηγ )2( −=  is the critical exponent of the

susceptibility for bulk systems (isothermal compressibility for bulk liquids);

- the scaling function F(x) has such an asymptotic formula for small arguments

when x →  xc : F(x) ~ (x – xc) 
-ζ  where ζ  is not equal in general case to γ .

       Let us verify the validity of the scaling hypothesis (24). With allowance for

formulae (18) and (21), one has such an expression for the susceptibility for a thin

liquid plane-parallel layer

                      χ  = χ 0K 2{4 [K 2τ ν2 f1(x) + π 2] –1 + (1 – 8/π 2)/4}               (25)

where χ 0 is the amplitude of the susceptibility.

Comparison between Eqs. (24) and (25) gives the following results:

1. According to Eqs. (24) and (25), the critical exponent ω= 2.  Taking into account

that ω= ηνγ −= 2/  and the fact that the Helmholtz differential operator L̂

corresponds to the OZ approximation with zeroth value of the critical exponent η  ,

this result confirms the first consequence of the Fisher scaling hypothesis (24) for

finite size systems.

2. Scaling function F(x) in Eq. (25)  depends on the argument x = K2/γ τ  for zeroth

external field, i.e. in the vicinity of the critical isochore. Therefore, for η  = 0  one

has 2 /γ = 1 / ν  = θ  in accordance with the second consequence of the scaling

hypothesis (24).

3. With increasing the thickness of a plane-parallel liquid layer one has the following

result for the scaling function F(x) from Eq. (25) for large arguments
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x = K2/γ τ >>1: F(x) ~ x –1 ~ x-γ  in accordance with the third consequence of the

scaling hypothesis (24).

4. The asymptotic behavior of the scaling function F(x) from Eq. (25) for small

arguments x = K2/γ τ << 1  does not agree with the last consequence of the scaling

hypothesis (24). It could take place only if ζ = γ . This result means  that  we cannot

use our approach in presented form to describe the transition from 3-dimensional

finite-size liquid layers to 2-dimensional monolayer. The probable reason is

connected with the fact that we have found only a nonsingular asymptotic solution

for the pair correlation function G2 which is not valid for very small geometric

factor (K →1).
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FIGURE CAPTIONS

Fig. 1. Temperature dependence of the correlation length (Rc)xy, nm for a thin liquid

layer (d=100 nm, a0=Rco =0,1 nm, k1=500, γ =5/4).

Fig. 2. Density dependence of the correlation length (Rc)xy, nm for a thin liquid layer

(d=100 nm, a0=Rco =0,1 nm, k1=500, δ =4,5).
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L.M.Chernenko, A.V.Chalyi  and  K.A.Chalyy Fig. 1.
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L.M.Chernenko, A.V.Chalyi and  K.A.Chalyy Fig. 2.
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